Projet ANR SPACLik

Jérémy Briffaut, Martial Szpieg, Christian Toinard

Equipe Sécurité et Distribution des Systèmes

ENSI Bourges - LIFO

- I. Introduction
 - I. Généralité
 - II. Principes de l'OS sécurisé
- II. Description du Système
 - I. Système de base
 - II. Noyau
 - III. Environnement utilisateur
- III. Garantie de propriétés de sécurité : PIGA-SP
 - I. Principe général
 - II. Partie Noyau: PIGA-Kernel
 - III. Partie Userland: PIGA-UM
 - IV. Exemple de propriétés définies
- IV. Conclusion

Conception d'un OS sécurisé

- Système d'exploitation basé sur Linux
- Objectifs:
 - Protéger le système des erreurs/abus de l'utilisateur
 - Protéger l'utilisateur contre l'exploitation de failles présentes dans ses applications
- Mise en oeuvre :
 - 1) Appliquer les patchs de sécurité connus
 - 2) Utiliser du Contrôle d'Accès Mandataire
 - 3) Définir et garantir des Propriétés de Sécurité

Principes de l'OS sécurisé (1)

- Renforcement de la sécurité via une chaîne de compilation sécuritaire
 - Basé sur une distribution Gentoo Hardened
 - GCC + Glibc renforcés
 - Options de compilation
 - fstack-protector-all
 - Wformat Wformat-security
 - -D_FORTIFY_SOURCE=2
 - Patchs de sécurité
 - **PIE**: Position Independant Executable
 - SSP : Stack Smashing Protector
 - Système entièrement recompilé

Principes de l'OS sécurisé (2)

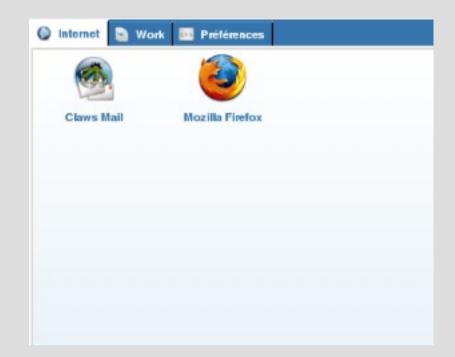
- Renforcement de la sécurité par un système de contrôle d'accès mandataire
 - SELinux
 - Politique strict et en mode enforcing
 - Politique modifiée pour fonctionner avec X
- Définition de modules SELinux spécifiques
 - Firefox
 - Clawsmail
 - OpenOffice

Principes de l'OS sécurisé (3)

- Noyau spécifique
 - Patch grsecurity&PaX
 - Protection contre la mémoire exécutable
 - Divers correctifs de sécurité
 - Patch Dakuzo
 - Recherche de virus lors d'accès aux fichiers
 - Partie userland : clamav
 - Patch PIGA-Kernel
 - Contrôle de propriétés de sécurité
 - Partie userland : PIGA-UM

- I. Introduction
 - I. Généralité
 - II. Principes de l'OS sécurisé
- II. Description du Système
 - I. Système de base
 - II. Noyau
 - III. Environnement utilisateur
- III. Garantie de propriétés de sécurité : PIGA-SP
 - I. Principe général
 - II. Partie Noyau: PIGA-Kernel
 - III. Partie Userland: PIGA-UM
 - IV. Exemple de propriétés définies
- IV. Conclusion

Système de Base

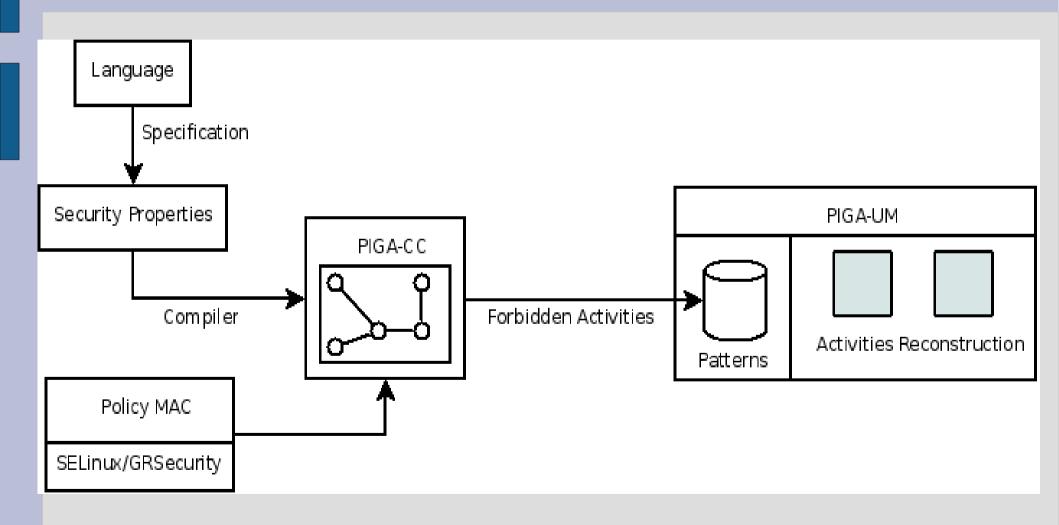

- Distribution GNU/Linux Gentoo
 - Variante LFS (Linux From Scratch)
 - Suite GCC/Glibc hardened
 - Compilation du système avec cette suite
 - Aucun service superflus installé
 - Pare-feu iptables
 - Packets sortant: Web Mail DNS
 - Packets entrant : rien

Noyau

- Noyau 2.6.25
 - Branche gentoo-hardened
 - Noyau vanilla + patchs de sécurité
 - Monolithique
 - SELinux activé
 - Patchs appliqués
 - PaX & grsecurity
 - Toutes les options activées
 - Dakuzo
 - Fonctionnant avec clamav
 - PIGA-Kernel

Environnement Utilisateur

- Environnement graphique LXDE
 - Simple
 - Léger
- Applications :
 - Firefox
 - Clawsmail
 - OpenOffice

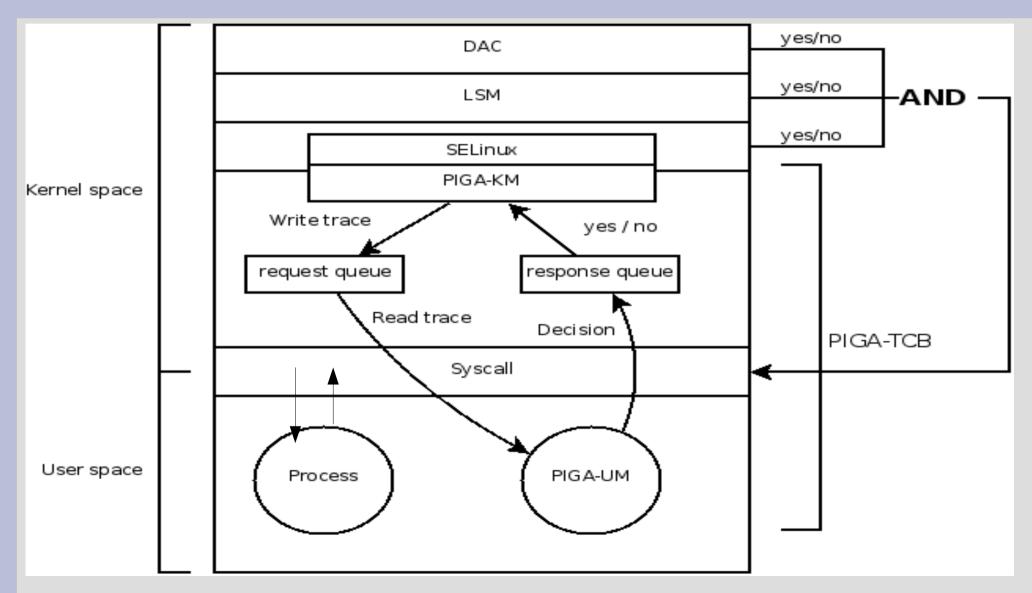


- I. Introduction
 - I. Généralité
 - II. Principes de l'OS sécurisé
- II. Description du Système
 - I. Système de base
 - II. Noyau
 - III. Environnement utilisateur
- III. Garantie de propriétés de sécurité : PIGA-SP
 - I. Principe général
 - II. Partie Noyau: PIGA-Kernel
 - III. Partie Userland: PIGA-UM
 - IV. Exemple de propriétés définies
- IV. Conclusion

Principe Général

- Garantir des propriétés de sécurité ...
 - Confidentialité/Intégrité/Abus de privilèges
- ... via un langage de haut-niveau
 - Spécification aisée des besoins de sécurité
 - Couvre aisément toutes les propriétés de la littérature
 - Permet de spécifier de nouvelles propriétés
- Contrôle mandataire des propriétés
 - PIGA-Kernel : contrôle des appels système
 - PIGA-UM : prise de décision en espace utilisateur

Fonctionnement Général


Partie Noyau: PIGA-Kernel

- Ajoute un contrôle mandataire en supplément du DAC Linux et du MAC SELinux
 - Détourne les appels système (hooks LSM)
 - Envoi des informations (traces) à la partie userland (PIGA-UM)
 - Applique les décisions prises par PIGA-UM
- Patch Noyau (en C), s'intègre dans LSM
- 2 modes de fonctionnement
 - Permissif (pour le développement/test)
 - Actif (pour l'OS livré)

Partie Userland: PIGA-UM

- Contrôle du respect des propriétés de sécurité
 - Reconstruction des activités en cours
 - Vérification de la légalité de ces activités
 - Pour chaque trace d'interaction envoyée par PIGA-Kernel :
 - autorise/interdit l'interaction
- Application codée en Java (60 000 lignes)
- S'installe sous forme d'un service système

Interaction entre PIGA-Kernel & PIGA-UM

Langage de spécification de propriétés de sécurité

- Terminaux du langage :
 - Interaction : un appel système
 - Séquence : suite causale d'appels systèmes
- Opérateurs
 - Combinaisons des terminaux
 - Structures de contrôle
- Supporte la définition de canevas
- Permet la réutilisation

Exemple de propriétés de sécurité

 Canevas de séparation des privilèges de modification et d'exécution

Utilisation

```
dutiesseparation( $sc1:=user_u:user_r:user_t );
```

- I. Introduction
 - I. Généralité
 - II. Principes de l'OS sécurisé
- II. Description du Système
 - I. Système de base
 - II. Noyau
 - III. Environnement utilisateur
- III. Garantie de propriétés de sécurité : PIGA-SP
 - I. Principe général
 - II. Partie Noyau: PIGA-Kernel
 - III. Partie Userland: PIGA-UM
 - IV. Exemple de propriétés définies

IV. Conclusion

Conclusion

- La première version fournit :
 - Un système linux + une interface graphique sécurisé
 - Le contrôle des propriétés de sécurité au niveau noyau Linux
 - Patch Noyau + Application userland
 - Quelques outils graphiques (firefox, clawsmails, ooffice, ...)
 - Module SELinux + propriétés dédiées